A novel MYBS3-dependent pathway confers cold tolerance in rice.

نویسندگان

  • Chin-Fen Su
  • Yi-Chieh Wang
  • Tsai-Hung Hsieh
  • Chung-An Lu
  • Tung-Hai Tseng
  • Su-May Yu
چکیده

Rice (Oryza sativa) seedlings are particularly sensitive to chilling in early spring in temperate and subtropical zones and in high-elevation areas. Improvement of chilling tolerance in rice may significantly increase rice production. MYBS3 is a single DNA-binding repeat MYB transcription factor previously shown to mediate sugar signaling in rice. In this study, we observed that MYBS3 also plays a critical role in cold adaptation in rice. Gain- and loss-of-function analyses indicated that MYBS3 was sufficient and necessary for enhancing cold tolerance in rice. Transgenic rice constitutively overexpressing MYBS3 tolerated 4 degrees C for at least 1 week and exhibited no yield penalty in normal field conditions. Transcription profiling of transgenic rice overexpressing or underexpressing MYBS3 led to the identification of many genes in the MYBS3-mediated cold signaling pathway. Several genes activated by MYBS3 as well as inducible by cold have previously been implicated in various abiotic stress responses and/or tolerance in rice and other plant species. Surprisingly, MYBS3 repressed the well-known DREB1/CBF-dependent cold signaling pathway in rice, and the repression appears to act at the transcriptional level. DREB1 responded quickly and transiently while MYBS3 responded slowly to cold stress, which suggests that distinct pathways act sequentially and complementarily for adapting short- and long-term cold stress in rice. Our studies thus reveal a hitherto undiscovered novel pathway that controls cold adaptation in rice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COLD1 Confers Chilling Tolerance in Rice

Rice is sensitive to cold and can be grown only in certain climate zones. Human selection of japonica rice has extended its growth zone to regions with lower temperature, while the molecular basis of this adaptation remains unknown. Here, we identify the quantitative trait locus COLD1 that confers chilling tolerance in japonica rice. Overexpression of COLD1(jap) significantly enhances chilling ...

متن کامل

Cold Tolerance Encoded in One SNP

Cold tolerance fundamentally affects world crop harvest. Ma et al. now identify a single-nucleotide polymorphism in a gene called COLD1 that confers cold tolerance in japonica rice. This study reveals important insights into agronomical traits that are essential for human nutrition.

متن کامل

Tobacco Transcription Factor NtbHLH123 Confers Tolerance to Cold Stress by Regulating the NtCBF Pathway and Reactive Oxygen Species Homeostasis

Citation: Zhao Q, Xiang X, Liu D, Yang A and Wang Y (2018) Tobacco Transcription Factor NtbHLH123 Confers Tolerance to Cold Stress by Regulating the NtCBF Pathway and Reactive Oxygen Species Homeostasis. Front. Plant Sci. 9:381. doi: 10.3389/fpls.2018.00381 Tobacco Transcription Factor NtbHLH123 Confers Tolerance to Cold Stress by Regulating the NtCBF Pathway and Reactive Oxygen Species Homeost...

متن کامل

OsMSR2, a novel rice calmodulin-like gene, confers enhanced salt tolerance in rice (Oryza sativa L.)

OsMSR2 is a novel calmodulin-like gene in rice. Previous study has been demonstrated that OsMSR2 was a cold, drought and heat-inducible gene. However, the role of OsMSR2 in rice stress response is still unclear. To reveal the function of OsMSR2 involved in stress response, the expression pattern and effects of overexpression of OsMSR2 on salt stress were analyzed in rice. Quantitative real-time...

متن کامل

CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.)

Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 153 1  شماره 

صفحات  -

تاریخ انتشار 2010